

Introduction to the ISD Measurement Program July 25, 2005

Presented by: Mike Stark

Software Process Improvement (SPI) Project

Objectives

- Purpose Provide an overview of the ISD measurement program.
- Objectives -- After this session you should know
 - Why organizational measurement?
 - What does a project have to do?
 - What ISD Measurement Team will do with data collected
 - What is produced for software teams & ISD

■ Note:

 - "Measurement and Analysis for ISD Software Projects" Software Engineering Discussion

Agenda

- Setting the stage: why measure?
- **ISD Measurement Program**
- Good advice for organizational measurement
- Summary

Why Measure?

Managing projects

Compare actual results with plans and expectations

Understanding process

– Create models of typical projects; for example what percentage of effort is needed for test?

Guiding Improvement

 Introduce new process or technology and assess impact on project results

Example: Planning models

Source: Flight Dynamics Division

Effort & Schedule model

Milestone	% of schedule	% of staff effort
Through SRR	12	6
Through PDR	20	14
Through CDR	35	30
Through TRR	65	70
End of acceptance test	100	100

Defect model (4-2-1 rule)

- Expected defects by phase
 - 4 per KSLOC in implementation
 - 2 per KSLOC in system test
 - 1 per KSLOC in acceptance test

Example: Guiding Improvement

Source: Flight Dynamics Division

Setting Expectations for New Methodology

	SAMPLE MEASURES	SAMPLE BASELINE	SAMPLE EXPECTATION		
PROCESS	Effort distributionChange profile	Design 23% Code 21% Test 30% Other 26%	Increased design %		
COST	Cost per LOCLevel of reworkImpact of spec mods	Historically, 26 LOC per day	No degradation of current level		
RELIABILITY	Error rateError distributionError source	Historically, 7 errors /KSLOC	GOAL: Lower error rate		

Example: Guiding Improvement

Source: Flight Dynamics Division

Agenda

- Setting the stage: why measure?
- **ISD Measurement Program**
- Good advice for organizational measurement
- Summary

Organizational Measurement at a Glance

- 1. Set goals & define strategy
- 2. Create models & define data with respect to goals & strategy
- 3. Collect & store data from software teams
- 4. Analyze data
- Deliver results to users (software teams, ISD management)
 - Planning models to software teams
 - Trend reports to ISD management
 - Services offered to SW teams, management
- 6. Repeat as needed.

1. Setting Goals & Strategies

Initial Goal:

- Establish a measurement program and create an initial measurement baseline to support
 - ISD software teams in managing their projects
 - ISD management team in applying SPI
- Strategies (listed as "goals" ISD Measurement Program Implementation Plan)
 - 1. Build software models for use by future projects
 - 2. Track performance trends
 - 3. Assess impact of SPI on ISD project performance
 - 4. Provide measurement support to projects
 - 5. Provide support to the ISD and its projects in meeting NASA measurement requirements (e.g., NPR 7150.2)

ISD Measurement Program Organization

2. Create Models and define data (1 of 2)

Considerations

- Need data to support analysis with respect to goals
- Need to minimize overhead to projects
 - Provide easy collection format & procedures
 - Use data projects need anyway
- With minimal data, we can produce a lot of useful models

2. Create Models and define data (1 of 2)

Models defined in ISD Measurement Plan

- 1. Total effort estimate
- 2. Effort estimate by phase
- 3. Total schedule estimate
- 4. Schedule estimate by phase
- Effort (remaining) prediction
- 6. Schedule tracking and prediction
- 7. Requirements volatility by phase

- 8. Defect Profile by phase
- 9. Productivity trend
- 10. Management performance trend
- 11. Impact of requirements volatility
- 12. Productivity by CMMI or internal assessment level
- 13. Defects by CMMI or internal assessment level
- 14. Effects of technology or process

Example: Measuring trends (ISD Plan Goal 2)

9. Productivity trend

10. Management performance trend

Use of data

Future projects: better planning/cost estimation ISD management: view into **organization's** performance

Example: Assessing Impact of SPI (ISD Plan Goal 3)

- CMMI assessments: more than a digit
 - Can look at trends in individual practices
 - Assessments produce stoplight charts, are they turning greener over time?
- Quick look assessment: a short list of key items,
 - e.g., does SMP exist, is CM being done, is there a test plan,...
 - Based on short interviews with software teams
 - Again, are stoplight charts turning greener?
- Correlate these trends with productivity, etc.

3. Collect & Store Data From Software Teams: Who, What, Where & When

- Who provides data?
 - All mission software projects
 - All other ISD projects larger than 5 staff years
- What do software teams provide?
 - Data collected via Excel spreadsheet
- Where is data stored?
 - Data is stored in cross-project database and used to build models we've defined
- When is data collected?
 - NOW!!!!

3. Collect & Store Data from Software teams: Spreadsheet details

3 worksheets

- Project characteristics -- key characteristics such as COTS & languages used collected at start; size data collected at end
- Milestone data -- high-level data typically reported at milestones
- "Notes for Analysis of Measures" -- provide notes on spreadsheet data items to ISD measurement team. Especially changes, e.g., of estimate, COTS product used,...

Available on tools page

(http://software.gsfc.nasa.gov/tools.cfm)

Project Characteristics Spreadsheet

_	
Project Name	
Contact Name	
Contact e-mail	
Software Type	

CSCI Name	Class	Language(s)	COTS product(s)	Platform	Size	Units

Color Coding Key
Yellow fill = end of project
White fill = project start

Milestone Data Spreadsheet

Project Acronym Current Date							
Event:	Start	SRR	PDR	CDR	Start Test	End Test	Maint.
Basis of Estimate Provided (Y/N)							
Estimated and Actual Milestone Date	es						
System Requirements Review							
Preliminary Design Review							
Critical Design Review							
Start of System Testing_ Acceptance Test End							
Turnover to Maintenance							
rumover to maintenance_							
Progress points (from point countin	a)						
Actual at milestone							
Estimated at completion							
					•		
Effort (expressed as FTEs)							
Actual at milestone							
Estimated at completion							
Requirements Data							
Number of requirements							
Number of TBDs							
Cumulative changed requirements							
Cumulative Defects							
critical defects found							
moderate defects found							
minor defects found							
-							

<u>Color Coding Key</u> Yellow fill = actual values

White fill = estimates

4. Analyze Data

- Select projects that are representative
 - Projects are not uniform, but explainable extreme variations need to be removed
 - E.g., COBE mid-project redesign
 - How these outliers differ may be interesting
 - Talk to experienced practitioners!
- Build planning models
 - Average data across projects
 - Provide uncertainty bands
- Look at trends in key measures

Analyzing Projects: Defect Profile Example

Analyzing Projects: Defect Profile Example

Modeling Trends: Productivity Example

- Uses data for completed projects
- Each project that is active in a particular year is included in the year's average
- As projects reach completion, their data is added to the analysis (adding information to preceding years)
- Same analysis technique is used for other performance parameters

5. Deliver Results to End Users (Software teams, ISD Management)

- Results for projects available via Web site
 - http://software.gsfc.nasa.gov/MeasProj.htm
 - Planning models created by analysis step will be deployed via this site
 - "Help desk" support for these products

- Results for organization
 - Trends in productivity, quality, and predictability
 - Assessment of SPI impact

6. Repeat as necessary (1 of 2)

- Step 1 next set of goals -- e.g.,
 - Win more proposals
 - Happy customers and users
 - Predictable projects with less reliance on heroics
- Step 1: next set of strategies, e.g.,
 - Invest in reuse technology
 - Improve cost estimation/re-estimation techniques
 - Improve monitoring of and control over requirements changes

6. Repeat as necessary (2 of 2)

Step 2: measuring reuse technology

- Add measures for proportion of artifacts that are new, modified, or reused verbatim
 - Code, requirements, test procedures,...
- Modeling impact of change
 - Has proportion of verbatim reuse increased?
 - Has productivity increased?
 - Have projects become shorter?

etc.

Agenda

- Setting the stage: why measure?
- **ISD Measurement Program**
- Good advice for organizational measurement
- Summary

Advice for organizational measurement programs

- Start with very small set of very basic measures
 - Add or refine measures in future iterations as you gain insight
- Tie measurement to organization's strategic planning
 - To assess how well plans are working
- Focus on analysis
 - If data isn't analyzed, don't collect it
- Streamline collect/store/analyze/report cycle

Summary

- ISD is about to start its first iteration of data collection, storage and analysis steps
 - We have done goal setting and model definition steps
- Purpose of program is to serve ISD projects and ISD improvement goals
- For more information
 - http://software.gsfc.nasa.gov/MeasISD.cfm
 - Contact Mike Stark via e-mail:
 - michael.e.stark@nasa.gov

Questions?

July 25, 2005 – Using the website http://software.gsfc.nasa.gov/

July 25, 2005 – Accessing Presentation Slides From the Website

For SW Engineering Discussions ... Click "Training" and highlight "S/W Eng. Discussions"

Access SW Engineering Discussion schedule: (http://software.gsfc.nasa.gov/swengdisc.cfm)

Access slides from past SW Engineering Discussions:

(http://software.gsfc.nasa.gov/swengdisc.cfm)

For Other On-Line Slides... Click "Training" and highlight "Training Program"

Access slides from other useful presentations

